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ABSTRACT

This paper presents a method for converting unrestricted
fiction text into a time-based graphical form. Key concepts
extracted from the text are used to formulate constraints
describing the interaction of entities in a scene. The solu-
tion of these constraints over their respective time intervals
provides the trajectories for these entities in a graphical rep-
resentation.

Three types of entity are extracted from fiction books to
describe the scene, namely Avatars, Areas and Objects. We
present a novel method for modeling the temporal aspect of
a fiction story using multiple time-line representations af-
ter which the information extracted regarding entities and
time-lines is used to formulate constraints. A constraint
solving technique based on interval arithmetic is used to
ensure that the behaviour of the entities satisfies the con-
straints over multiple universally quantified time intervals.
This approach is demonstrated by finding solutions to mul-
tiple time-based constraints, and represents a new contribu-
tion to the field of Text-to-Scene conversion. An example of
the automatically produced graphical output is provided in
support of our constraint-based conversion scheme.

Categories and Subject Descriptors

1.2.7 [Artificial Intelligence|: Natural Language Process-
ing—Language parsing and understanding; 1.3.7 [Computer
Graphics|: Three-dimensional Graphics and Realism—An-
imation

General Terms

Text-to-Scene conversion, interval constraint solving
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1. INTRODUCTION
1.1 Problem Statement

We investigate the process of converting fiction text to a
corresponding graphical form. In particular, we focus on the
previously un-investigated case of:

e unrestricted input text (directly using text written for
human consumption), and

e taking the temporal nature of fiction writing into ac-
count.

This paper presents a constraint-based approach to address-
ing this problem by defining the categories of entity required
for graphical representation, and creating constraints relat-
ing these in a temporal manner. We describe how such con-
straints are applied to actual object models, and present a
solving technique based on interval arithmetic which is capa-
ble of ensuring that these non-linear constraints are satisfied
over the specified time periods.

1.2 Background

The process described in this paper is a component of
a Text-to-Scene conversion system, where information from
natural language texts is used to populate three-dimensional
virtual worlds with objects and movements. Descriptions of
dramatic scenes occur frequently in fiction books, describing
scene contents and layout, and the movements and actions of
the entities in the scene. These descriptions may be used to
define graphical representations of the scene, provided they
are accurately identified and interpreted. A representation
of the fiction text is required that mirrors scene informa-
tion as described in the book, but that is sufficient for the
creation of explicit instructions for placing and moving ob-
ject models in a three dimensional modeling, animation and
rendering system.

We choose a constraint-based approach for the interme-
diate representation between original text and the resulting
graphical instructions. We assume all entities in the fic-
tional world are following some space-time path through the
fictional universe. When a sentence is encountered that is
relevant to a particular entity’s position or motion, a con-
straint is created that characterises the path of the entity in
some manner. For example, the sentence, “John and Mary
walked side by side” would result in a constraint which limits
the two entities’ motions such that they are within a certain
distance of each other over the period of time implied by the
sentence.



1.3 Overview

Figure 1 presents an overview of the process described in
this paper for creating and solving constraints from fiction
text. The original text is annotated with information that
points to three categories of data, namely entities (Section
3.1), relations between entities (Section 3.2) and the time-
lines (Section 3.3). This data is used to construct a set of
abstract constraints that specify the trajectories of the ob-
ject models in a 3D scene (Section 3.4). These constraints
are transformed into a system of time-dependent, non-linear
equations that constrain the actual trajectories of the mod-
els (Section 4). Values for the variables of each trajectory are
then found using an interval-based constraint solving tech-
nique (Section 5). Thereafter the models are placed into a
3D scene, and each is animated according to its trajectory.

2. RELATED WORK

Text-to-Scene conversion research uses various ways to
represent the semantic content of the story. Commonly
found is the concept of a frame [14]: a template associated
with some semantic concept. The template is hard-coded
with instructions concerning its use, and contains slots that
parameterise the instructions. The instructions indicate the
way in which the frame is interpreted in producing output,
and slots are filled with relevant information from the text
using information extraction techniques. WordsEye [6], Car-
Sim [21], the Put System [5], CONFUCIUS [13|, and SWAN
[11] are all Text-to-Scene conversion systems that make use
of approaches which relate to this idea. The temporal el-
ement of text is most often described using werbs [11, 17,
12]. Systems based on this approach generalise all verbs
into a fixed and finite set of actions [20], each of which has
a frame-like representation containing slots and instructions
for interpreting the action.

Temporal aspects of text-to-scene conversion are handled
in different degrees by the existing systems. Conversion of
language to static graphics, that is where the final result is
an image rather than an animated sequence, has been ex-
plored in systems such as WordsEye [6] and the PUT system
[5]. The element of time has been investigated in systems
such as CarSim [1] that create animations of car accidents
based on chronological event descriptions.

Solving for trajectories can be accomplished using constraint-

based approaches. WordsEye [6] makes use of a constraint
solver for positioning objects, but does not include a tempo-
ral aspect. CarSim [10] also makes use of constraint solving
techniques for calculating trajectories of the involved vehi-
cles. However, a sampling-based approach is used to verify
trajectories, which is only suitable for its limited domain,
but presents problems for conversion in more general do-
mains such as is the case with fiction text.

None of the Text-to-Scene conversion systems documented
in existing literature describe systems that are capable of
working with the generalised case of fiction text, where the
domain cannot be limited to a finite set of objects and ac-
tions as in the CarSim system [10]. In addition, we wish to
work with original source text, as opposed to systems such
as SWAN [11] and CONFUCIUS [13] which make use of
constrained forms of language (namely, restricted Chinese,
and dramatic scripts respectively). This paper presents a
framework for handling more general cases as found in fic-
tion text.
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3. ABSTRACT CONSTRAINT FORMULA-
TION

Abstract constraints are high level constructs that spec-
ify spatial relations between entities over specific periods of
time. To create these constraints we require the identifica-
tion of entities that are described in the text, as well as the
spatial relationships that exist between them. In addition,
the manner in which these relations occur over time must
be specified in order to indicate the period over which a
constraint applies.

3.1 Entities

Fiction books describe people, objects and actions that
occur in a fiction or wirtual world. We define three cat-
egories of entity that form part of this virtual world and
which are capable of being represented graphically, namely
Area, Object and Avatar. Avatars refer to characters in the
story, while Objects refer to inanimate items. Areas are the
spaces that Objects and Avatars may traverse.

The entities are associated with tokens or phrases in the
original text as depicted in Figure 2'. The identification and
creation of entities from fiction text is beyond the scope of

this paper, but automatic approaches such as named entity
extraction [22], or our earlier work on rule generalisation [8]
up with official , commonplace elegance .
o e
/_% AVATAR: Sorelli
< OBJECT: sofa j Sorelli was very superstitious . She shuddered...
Figure 2: Illustration of the relationship between

can be used for this purpose.
A pier-glass , asofa, a ...
text descriptions and entities.

Entity: Avatar

Graphical Indicators

Textual Triggers:

- female
- singular Model: womanl.off

Motion: ({X:
Y:

"Sorelli",
"La Sorelli",
"Prima ballerina"

splineX,

splineY}

Figure 4: Illustration of the relationship between
text descriptions and entities.

Each entity is associated with a list of the teztual triggers,
which are sequences of tokens in the fiction text which re-
fer to the specific entity. In addition, each entity has fields
for properties which are useful for graphical output, such
as the name of an object model file attributed to the en-
tity, and data concerning the motion of the item. Figure
4 presents an example of the Awatar entity. Each entity
category may have attributes which characterise each in-
stance, for example, gender and multiplicity in the Avatar
case. World knowledge is encoded into the definition of these
categories. In this case, Avatars are known to be humanoid

Note that pronouns also act as textual triggers, but the
antecedent of each pronoun is used to identify the entity
that the token applies to.
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Figure 3: Indication of the slots required for the definition of a relation. Examples of the relationship between
relation types textual triggers are shown, as well examples of embedded geometrical interpretations for each

type of relation.

in either male or female form, which will later assist in se-
lecting an appropriate object model.

3.2 Relations

In addition to entities, we also extract the spatial relation-
ships between entities that are described in the text includ-
ing, for example, InFront0f, AdjacentTo and Inside. The
structure of a Relation (shown in Figure 3) is similar to Min-
sky’s frame [14] in that it contains instructions (graphical
interpretations) and slots that parameterise these instruc-
tions. Trigger words in the text result in the creation of a
relation object, and the location of the trigger in the text is
recorded for use when extracting timing information. The
entities acting as subject and object of the relation are iden-
tified, where the subject refers to the entity directly affected
by the relation, and the object acts as a reference. Each cat-
egory of relation has corresponding instructions defining its
geometrical interpretation phrased as a set of constraints.

3.3 Time-lines

Fiction texts can be viewed as time based accounts de-
scribing sequences of events that occur in the virtual world.
This world has its own time-line of events, and the fiction
text is merely reporting on certain events that occur along
this time-line. However, time is rarely quantified in fiction
writing, and in most cases, an indication of when actions oc-
cur and their duration are implied. In addition, events are
seldom reported in sequential order, with “flash-backs” be-
ing frequently used as a stylistic technique. Phrasings such
as “he had been to the ...” and “Previously, he had done...”
indicate that the action took place in the past, but with no
quantification.

The non-sequential reporting of events is chosen deliber-
ately by the book’s author to create effects (such as sus-
pense), and are crucial to the way in which the story is
perceived. However, in some instances, the actual order of
events is required to determine certain scene information.
For example, the sentence in Figure 5 describes an event in
which the dressing-room is invaded by ballet-dancers.
Up until this point, there is no indication of where the
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dancers were previously, but in order to display this event
graphically the original location of the dancers is required.
The last portion of the sentence provides us with this in-
formation in “flash-back” form, indicating that the dancers
were previously on the stage.

Suddenly the dressing-room of La Sorelli, one of
the principal dancers, was invaded by half-a-dozen
young ladies of the ballet, who had come up from
the stage after "dancing" Polyeucte.

Figure 5: Example of non-sequential reporting, from
The Phantom of the Opera by Gaston LeRoux.

We derive two time-lines from a story to maintain the au-
thor’s original reporting style and simultaneously maintain
a chronological ordering of events in the virtual world:

e Presentation Time-line: This maintains the order-
ing of events as they are described in the original narra-
tion. The time-line is made up of segments, each which
represent a sentence in the book. When presenting a
story graphically, it is useful to be able to present the
original narrative simultaneously. The segments can
either be displayed graphically as subtitles, or alterna-
tively using audio renderings of the text created using
text-to-speech technology. We choose the latter, since
duration of the generated audio files can be used to add
timing information to each segment in the time-line.

e Scene Time-line: This describes the actual ordering
of events in the virtual world. Consider once again Fig-
ure 5. The events in this case would be set in order if
the text segment, “who had come up from the stage af-
ter dancing Polyeucte” were placed at the beginning of
the sentence (assuming, that the pronoun “who” is al-
ready resolved), and some indication is made of the ac-
tual time between when the dancers were on the stage,
and when they arrived at the dressing-room. Seg-
ments in the scene time-line contain parts of sentences,



which are identified manually, and assigned starting
times and durations for action described. The time-
line is ordered according to these specified times and
duration.

The sentence in Figure 5 is presented in its equivalent
time-line form in Figure 6. The presentation time-line is
constructed by creating a segment in the time-line for each
sentence in the fiction book. An audio file is created for
the sentence using a text-to-speech converter, and timing
information is derived from this file. The scene time-line is
constructed by selecting portions of text and specifying the
start-times and durations for each segment of text.

The presentation time-line is used to assemble the final
graphical output in the original order according to the nar-
rative. For example, the audio file and subtitles for the
first segment in Figure 6 are laid down in a sequencer. The
corresponding graphical output must be “filmed” from the
appropriate point in the scene time-line, and this is found
using the link indicated in Figure 6.

The first chapter of The Phantom of the Opera by Gaston
LeRoux has been annotated with time-line information, and
Figure 7 is a graphical representation of the two. Notice that
segments in the scene time-line may overlap, indicating that
events may occur concurrently in the virtual world. Most
of the chapter covers a short sequence of events, but there
are occasional descriptions of events of long duration. This
explains why most segments in the presentation time-line
map to a very small area of scene segments.

3.4 Abstract Constraint Formulation

Each entity maintains a list of relations that affect it, and
this list is used to construct abstract constraints for the en-
tity. Initially the scene time-line is traversed in order, seg-
ment by segment, and when triggers for relations are en-
countered the relation is added to the list of each entity it
affects. In this manner, the list of relations for each entity
is ordered according to the scene time-line.

An abstract constraint is created for each relation in an
entity’s list, specifying the subject, object and type of con-
straint from the slots defined in the corresponding relation.
The start time is calculated with respect to the segment
from the scene time-line in which the relation occurs. For in-
stance, if the Start of a segment is specified as After previous
then the preceding segment’s start time is derived and added
to the previous segment’s duration, resulting in a starting
time for the current segment. An offset from the start of the
segment is calculated based on the location of the trigger in
the segment, and this is added to the starting time of the
segment, resulting in a start time for the abstract constraint.

The end time for each constraint is initially not set, under
the assumption that a constraint holds until specified oth-
erwise. If another constraint is applied to the entity, then
the end time of the constraint is set to the start time of the
succeeding abstract constraint. This prevents multiple rela-
tions applying to the same entity simultaneously, but if this
is required then the duration of the relation can be explic-
itly added to the start time to produce the end time of the
constraint.

The final result of this process is a list of abstract con-
straints, an example of which is presented in Figure 8. The
first two constraints were generated from the example in
Figure 5, and the last constraint is generated by the next
sentence in the fiction text.

22

4. CONSTRAINED ENTITY TRAJECTORIES

Having identified a series of time-based constraints from
the text, the next problem to solve is the creation of a
three-dimensional scene where we place an appropriate ob-
ject model for each entity, and ensure that the entity is at
the correct location at the correct time according to the list
of abstract constraints.

4.1 3D Model Selection

An automatic process for selecting object models for en-
tities is dependent on a database of standardised and anno-
tated geometry models. We have created such a database
in which each model is guaranteed to be of unit height, and
facing the positive z — axis. In addition, each model is an-
notated with a scaling field, which is used to scale the model
in relation to other models. Most importantly each model
is annotated with a set of keywords that describe it.

Each type of entity is encoded with information regarding
the type of model appropriate to its representation. Avatars,
for example, are encoded with instructions that only two
types of model are acceptable, namely those annotated with
“male” or “female”, depending on the gender indicated for
each specific instance (see Figure 4).

Locating models for Objects is more complex, since it is
unreasonable to expect a model database to contain a corre-
sponding model for every conceivable item in the universe.
For example, our object library contains no corresponding
object matching the unusual term “pier-glass”. We use the
lexical database WordNet [7] to resolve this issue. WordNet
returns “mirror” as the immediate hypernym? of “pier-glass”,
a model of which our database does contain. It is in this
spirit that objects are chosen, abstracting terms lexically,
until a matching model is found.

Areas default to a model of a large cube for depicting
rooms, but may also invoke scene generation procedures for
outdoor environments. Examples currently under investiga-
tion are procedural terrain [16] and city generators [19].

4.2 Trajectory Creation

Each entity is assigned a time-based representation for
its trajectory in the virtual world. Splines as a function of
time are a convenient representation for this purpose, where
an entity’s location is a curve through space parameterised
by a single variable ¢t. We define the virtual world using
Euclidean space in three dimensions, which means that each
entity contains three splines indicating its location in time
along the x, y and z axis.

Each abstract constraint is transformed into a series of
expressions that define restrictions on the curves of the en-
tities involved. These expressions are defined for each type
of relation, as depicted in Figure 3.

To illustrate, assume the trajectory for an Entity ¢ over
time ¢t is specified as z;(t) = ait? + bt + ¢, where a;, b; and
¢; are values that define the shape of the spline. The con-
straints are required to hold over a bounded and continuous
span of time representing a portion of the scene time-line
described in Section 3.4. Each continuous span of time is
referred to as an interval of time T. A finite point of time
within T is referred to as t.

An Inside constraint is specified by ensuring that the tra-
jectories of both entities are sufficiently close for the model

Zabstraction



w| File: narrationl.wav
| | ~ Length: 8.84s
Presentation Timeline Suddenly the dressing-room ... ... of the ballet, who had come up ... ... Polyeucte.
Scene Timeline who had come up ... ... Polyeucte. Suddenly the dressing-room ... ... of the ballet,
Start: After previous Start: After previous
Offset: 0 minutes Offset: 5 minutes
Duration: 5 minutes Duration: audio length

Figure 6: Relationship between presentation time-line and scene time-line.

Presentation Time-line III

—

Scene Time-line

Figure 7: Presentation and scene time-line for first chapter of the Phantom of the Opera by Gaston LeRoux.

of the subject to be inside the object over the k-th time
interval T}:

(z:(t) — zj(t)* < d® Vt €Ty

An AdjacentTo constraint is specified by ensuring that
the entities are close, but do not intersect one another over
the entire time interval T}:

(2i(t) — z;(t)? > dppipy VE € T
(2:(t) — 25(t))? < dpaw YVt € Tk

The bounds dmin and dmmee are calculated as a function of
the sizes of the bounding boxes of the affected entity object
models.

Each constraint is created in the above manner, resulting
in a set of expressions that describe how the curves must be-
have. What remains is to find suitable values of a;, b; and ¢;
for each curve that ensure that the trajectories comply with
the set of constraints. Figure 9 presents a set of constraints
produced from the abstract constraints in Figure 8.

S. CONSTRAINT SOLVING

We do not assume linearity for the systems of constraints
that need to be solved, since we wish to specify trajectories
of degree n > 2 as well as constraints that are non-linear
in nature (for example involving trigonometric functions).
Therefore, traditional numerical methods for solving sys-
tems of constraints, such as linear programming, are insuf-
ficient. In addition, the solving method must be capable of
ensuring that each constraint is satisfied over its entire time
interval.

The difficulty, as presented in Figure 9, is the presence of
universally quantified variables, t;. This means that a single
set of parameters for the curves must be found, such that
the curves satisfy the constraints for the entire specified time
interval.

The time domain is a continuous one, and hence there are
infinitely many real values in any given time interval. How-
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ever, a computer is limited in its representation capacity,
and for any given time interval, only a finite set of floating
point values within the interval can be represented. The
most certain method for validating a constraint would be
to evaluate the constraint using a chosen set of parameters
for each floating point value within the specified time inter-
val and test that the constraint is satisfied. This would be
highly inefficient, and there will still be uncertainty regard-
ing whether constraints are valid for the non-representable
real numbers. If fewer samples are evaluated then the un-
certainty increases since a curve may deviate widely from
the correct path between two sample points.

Interval arithmetic is a field of mathematics that works
with continuous intervals, rather than on single values, mak-
ing it suitable for the representation of time intervals which
are specified in our set of constraints.

5.1 Interval Arithmetic

Let R be the set of real numbers. The set of numbers
that can be represented on a computer is F C R. A floating
point interval is a set of real numbers bound on either side
by floating point numbers. Formally, given g € F and h € F,
then [g,h] = {g < r < h|reR} [15]. Therefore, the interval
[g, h] contains every real number between (and including) ¢
and h. An interval is denoted using uppercase (for example,
I =g,h]).

Let A = [a,b] and B = [c,d]. Various interval operators
are defined as interval extensions to their real-valued coun-
terparts [15]:

e Addition: A® B =[a+ ¢, b+ d]
e Subtraction: A© B =[a—d,b— (]

e Multiplication: A® B = [min(S), maxz(S)] where S =
{axc,axd,bxc,bxd}

e Division: A® B=A® [1/d,1/c] where 0 ¢ B, unde-
fined otherwise.



CONSTRAINT: CONSTRAINT:
Subject: ballet-dancers Subject:
Relation: Inside Relation:
Object: stage Object:
Start-time: 0.0 Start-time:
End-time: 0.2 End-time:

CONSTRAINT:
ballet-dancers Subject: ballet-dancers
Inside Relation: AdjacentTo
dressing-room Object: Sorelli
0.4 Start-time: 0.4
0.6 End-time: 0.6

Figure 8: Example set of constraints derived from the example in Figure 5.

ci: (a1t +bits 4+ c1) — (aat? +bat1 +c4))? < 122 VYt € [0.0,0.2]

O = co ((aﬂf% + bito + 01) — (agtg + bsto + 03))2 > 12 Vtg € [0.4, 06]
B c3 ((alt% + bito + Cl) — (agt% + bsto + 03))2 < 8.92 Vto € [0.4, 06]
ca: ((arth + bita + c1) — (a2t3 + bata + ¢2))? < 15.8%  Vta € [0.4,0.6]

Figure 9: Example constraint set C, involving four objects, namely ballet-dancers (01), dressing-room (02),
Sorelli (03) and stage (04) derived from the constraints specified in Figure 8. For illustrative purposes we

only constrain the z dimension.

Each of the above operators can be used in place of their
real-valued counterparts in order to transform an expression
into its natural interval ertension. For example, the natural
interval extension of a trajectory (defined in section 4.2) is:

Xi(M=(ATT)e(B;T)® C;

The Cartesian Product of variables A; x B; x C; x T is
referred to as a box B, and in this case forms the domain of
this function.

Interval arithmetic is inclusion monotonic, meaning that
the resulting range from evaluating the function over B using
interval operators includes all possible values for the func-
tion over that domain. However, the reverse does not hold,
and the range produced may also contain values which are
not in the actual range of the function. The next section
will demonstrate the difficulty that this fact introduces into
constraint solving using interval arithmetic.

5.2 Interval Constraint Solving

For the constraint system C' in Figure 9, we wish to find
values for a;, b; and ¢; such that all the constraints are
satisfied over the specified time intervals.

5.2.1 Search Space Reduction

Initially a constraint solver is provided with a box repre-
senting the domain which has to be searched to locate so-
lutions to the constraint system. Since the domain for each
variable is an interval of real numbers, a brute force traversal
of all possible combinations of values is not feasible. Con-
sistency techniques [2] aid in reducing the search space by
removing parts of the variable domains that invalidate the
set of constraints (called narrowing), while still containing
all the solutions. If the box does not contain a solution then
a consistency technique will fail, making it a useful pruning
tool.

Consistency techniques have limited narrowing abilities,
and in order to tighten the bounds around a solution the
narrowed box is split in half along one of its variables, and
narrowing re-applied to each half. This process is contin-
ued until a box is found that validates the constraints, or
until machine precision is reached (meaning that the small-
est computer-representable box has been found containing
a solution).
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Figure 10: Illustration of the problem with evalu-
ating a constraint over a universally quantified vari-
able t. The constraint to be verified is a1t?>+b1t+c1 >
a2t2 + bot +co Vt € [O, 2}.

5.2.2  Solutions for Universally Quantified Variables

The difficulty with the universally quantified variables ¢; is
that we need to ensure that solutions found are valid over the
entire specified interval of ¢;. This means that the ¢; variable
may not be split. This introduces problems when checking
that a box validates a constraint [9]. Consider Figure 10,
which depicts a parabolic trajectory which is constrained
to be above another. When the interval extension of each
trajectory is evaluated over the entire time interval [0, 2], the
ranges indicated in the figure are returned. In order for the
constraint to be satisfied the range of the top function may
not overlap with the range of the bottom function. However,
the figure indicates that while trajectory 1 is always above
trajectory 2, the resulting ranges do not indicate this. One
possible solution is to divide the interval [0, 2] into smaller
sections, and evaluate each section at a time, returning a
positive result when all the sub-sections are satisfied. The
problem with this approach is defining the minimum width
of these sections, which may be required to be smaller than
what is representable on a computer.



Figure 11 presents a graphical illustration of the solving
process which avoids the need for evaluating a constraint
to check whether a solution has been found which satisfies
the universally quantified variable [3]. In Figure 11(a), the
initial box B is narrowed over the constraint and produces
box B’ eliminating some, but not all, invalid ranges of values
from the initial domains. Since narrowing operators never
discard solution space, if the universally quantified variables
are narrowed in any way then that means that no solutions
exist in B which are valid over the entire interval and so this
box is discarded.

B’ is then narrowed using the equivalent negated con-
straint, which is derived by inverting the relation operator,
for example from > to <. The result of this narrowing is
box B”, as illustrated in Figure 11(b).

Since the solution of the negated constraint is the inverted
solution of the original constraint, any box-set difference
between B’ and B” is guaranteed to be a solution to the
original constraint. Figure 11(c) indicates two options for
calculating the box set difference. The first option yields a
solution P that spans all ¢ and is a universally quantified
solution. If further solutions are required, then the box-
set difference in option 2 is used to shrink the universally
quantified interval, since the constraint is guaranteed to hold
for any x over the entire sub-interval of ¢ in Q.

In summary, this technique is capable not only of locating
solutions for universally quantified variables without requir-
ing an evaluation step, but also enables the reduction in size
of the universally quantified variable. If a solution is not en-
countered then box B” is split, and the process repeated on
each sub-box.

5.3 Solution and validation of Time-based Con-

straints

5.3.1 Implementation

We have implemented a Java version of an interval con-
straint solver based on the methods described in Section 5.2.
The implementation allows for constraints such as those in-
dicated in Figure 9 to be specified within text files which
are parsed using Java Math Expression Parser (http://
www.singularsys.com/jep/). We provide our own imple-
mentation of the interval operators, based on specification
by Moore [15]. Expressions are evaluated using an inter-
val implementation of function approximation using Taylor
Expansion, described in Neumaier[18].

We implemented a narrowing method based on boz con-
sistency [4, 2] to achieve solutions of non-linear constraints
containing universally quantified variables. This technique
narrows domains of variables in a constraint one at a time by
fixing the intervals of the remaining variables in an expres-
sion, and then finding the roots of the remaining expression
(see Benhamou et al. [4] for a more detailed description).
Although root-finding using the Interval Newton method is
commonly used, we find that this method is complicated by
the requirement for the evaluation of the first derivative of
the function, as well as a division method which is not al-
ways successful if the denominator interval contains zero. As
such we implement a method that locates roots by evaluat-
ing the interval extension of the function, only subdividing
domains which evaluate to an interval containing zero, and
discarding the rest. This process is repeated until machine
precision is reached, at which point the smallest interval con-
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Figure 11: Graphical illustration of solution finding
approach for constraints using universally quantified
variables.

taining a root has been found. This method produces more
accurate roots, and is simpler to implement, even though in
some cases it requires more subdivisions than the Newton
method.

We are interested in finding the first solution that satisfies
the entire set of constraints, which is contrary to the algo-
rithm described by Benhamou et al. [3] which is aimed at
finding all solutions. Instead of finding all solutions to a sin-
gle constraint, then passing these as starting search spaces to
the next constraint in the system, until all constraints have
been solved, we implement the algorithm in a depth-first
backtracking manner, meaning that the moment a solution
for a constraint is located, it is passed to the next constraint
until all constraints are solved. This limits the amount of
time spent on a constraint for which there are many small
solutions.

The set of constraints indicated in Figure 9 is the first
we have encountered in literature containing more than one
universally quantified variable. The algorithm [3] is thus
modified to apply to a set of constraints that contains more
than one such variable. Care must be taken not to split
any of these variables, and each time a box is narrowed the
entire set of these variables must be checked for narrowing.

5.3.2  Configuration

The constraint set presented in Figure 9 contains 12 vari-



ables, and another two universally quantified variables. These
variables are assigned the initial domains presented in Fig-
ure 12 from which the solver must find values that satisfy
the constraints. Note that for object o2 and o4 the variable
a; and b; are set to zero, since these are Areas and hence
must have no motion. The last parameter ¢; in these cases
indicates the location of these Areas. The time variables
tiand to are specially marked to indicate that they must be
treated as universally quantified. The solver is set at a pre-
cision of 1072, meaning that domains may only be split if
their width is greater than this value.

ay: [7,10] bi: [-1,-1] ¢ : [—5,20]
az: [0,0]  bo:[0,0] s [29,35]

B= as: [4,5]  bz: [-1,1] e3: [-5,10]
as : [0,0] bs : [0,0] cq : [=5,5]
t:00,0.2] 3 [0.4,0.6]

Figure 12:
9.

Initial box for constraint system in Figure

A solution is output in the form of a box containing ranges
for each variable that are guaranteed to satisfy all the con-
straints. The mid-point of each range is substituted at the
appropriate places in each expression in C' (in Figure 9) and
the trajectory of each object is traced from time —1 to 2.
These trajectories are imported into the Blender 3D mod-
eling package (http://www.blender.org), and assigned to
appropriate object models for each entity (which are deter-
mined automatically as described in Section 4.1).

5.3.3 Results

The constraints in Figure 9 are solved using our constraint
solver, producing trajectories indicated in Figure 13. The
motion of the ballet-dancers and Sorelli are depicted
as parabolae, and the graph depicts the z — value of the
entities’ location over time. Below the graph are renderings
of the actual 3D scene at certain points along the time-line.

The first rendering depicts the location of the entities be-
fore any constraints are applied. Notice that the two areas
are positioned close together as an indirect result of the set
of constraints (that is, the fact that the ballet-dancers are
required to move from the stage to the dressing-room in
such a short period ensures that the two Areas are positioned
close together). Also at this point the ballet-dancers are
not in the stage Area.

The filled rectangles in Figure 13 represent the constraints
over the two time intervals. It is evident from the graph that
the motion of the ballet-dancers satisfies constraint cq,
ensuring that they are within the stage for the entire period.
The corresponding rendering reflects this, depicting that the
ballet-dancers have indeed moved inside the stage Area.

The constraint over the second time interval is also satis-
fied, as is depicted with the right rectangle, indicating that
the ballet-dancers are located inside the dressing-room
for the entire period specified. It is clear from both the
graph and the rendering however, that Sorelli is not in
the same Area as the ballet-dancers, but the constraint
that they be within a certain distance of each other is still
satisfied. To correct this problem an additional constraint
would need to be added to ensure Sorelli is also inside the
dressing-room for the allocated time interval.
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The final rendering depicts the scene after the constraints

have lapsed, and it is evident that the path of the ballet-dancers,

no longer constrained to be inside the dressing-room, leads
them elsewhere.

5.3.4 Observations

The renderings in Figure 13 are an indication of the suc-
cess of our constraint-based approach to Text-to-Scene con-
version. It is clear that the sequence of images reflect the
events described in the original sentence in Figure 5. In
particular, the images show that the non-sequential man-
ner of reporting is resolved correctly, and that the types of
constraints derived are suitable for graphical representation.

The images also indicate that the mathematical expres-
sions corresponding to each type of relation is suitable for a
corresponding graphical representation, since the figures are
in the correct locations at the expected times.

Finally, we observe that the interval constraint solving
system successfully finds solutions to a set of constraints
that contain more than one universally quantified variable.

In conclusion, Figure 13 indicates that we have created
a system that is able to transform constraints derived from
text into time based graphics.

5.3.5 Caveats

Currently our system finds a solution to the constraint
set C' in Figure 9 in an average time of 50.66 seconds on a
Pentium 4 1.8GHz processor. Performance of the constraint
solver depends on the complexity of the search space. This
is governed by three factors:

1. The number of variables: Currently trajectories are
specified as parabolae, which do not apply much flex-
ibility in terms of interesting motion. We wish to ex-
tend these to n-degree splines, capable of flexible mo-
tions. However, such splines usually include a large
number of variables, significantly extending the search
space.

2. The number of dimensions: The constraints indicated
in Figure 9 only apply in one dimension, suitable for
representing this example. However, we aim for a 3-
dimensional representation, which requires the tripling
of the number of variables required to represent tra-
jectories, and increasing the search space.

3. The number of constraints: Each sentence in a fiction
book has the ability to create a number of constraints
that apply to multiple trajectories over different (possi-
bly overlapping) time intervals. The more constraints,
and the more interconnected they are, the smaller the
solution space becomes in a very large search space.

These scalability issues are important for our goal of repre-
senting fiction graphically, and are currently under investi-
gation.

6. CONCLUSION

Our constraint-based method is capable of converting un-
restricted fiction text into graphical output. The contribu-
tions of this paper include:

e The identification of components of fiction text which
can be used as a source of objects in a graphical repre-
sentation, and temporally based constraints to control
the animation of these objects.
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Figure 13: Interpreted solution for constraint set in Figure 9.

e A method for annotating and utilizing the presentation
and scene time-line in a fiction text. The use of a text-
to-speech synthesiser for deriving timings is unique.

e The constraints we describe are also unique to the
Text-to-Scene domain.

e The use of interval arithmetic in solving sets of con-
straints has not been explored in any existing Text-
to-Scene literature. We present the first example of a
system containing more than one universally quanti-
fied variable, and we show that systems of these equa-
tions can be solved, guaranteeing that the trajectories
satisty the constraints over the specified time intervals.

Future work includes optimising the interval-based constraint
solver in fashion that improves its scalability to handle the
quantity of constraints produced by a full fiction text.
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