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ABSTRACT 

This paper describes a strategy for automatically converting fiction text into 3D animations. It assumes the existence of 

fiction text annotated with avatar, object, setting, transition and relation annotations, and presents a transformation 

process that converts annotated text into quantified constraint systems, the solutions to which are used in the population 

of 3D environments. Constraint solutions are valid over temporal intervals, ensuring that consistent dynamic behaviour is 

produced. A substantial level of automation is achieved, while providing opportunities for creative manual intervention in 

animation process. The process is demonstrated using annotated examples drawn from popular fiction text that are 

converted into animation sequences, confirming that the desired results can be achieved with only high-level human 

direction.  
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1. INTRODUCTION 

The conversion of fiction text to a unified multi-modal animation is a difficult and subjective process which 

requires substantial human intervention at every step of the process (as evidenced by the lengthy list of 

credits at the end of any film). Some steps in the process stand to benefit from automation, freeing the human 

component to concentrate on the creative aspects. This paper describes a process for automating tedious 

aspects of converting fiction text to animations, while still allowing directorial intervention consistent with 

the constraints in the scene. 

We transform annotated fiction text into 3D animations by determining time-quantified constraints with 

regards to objects in the scenes, the solutions to which are used to specify layout, appearance and motion 

within a 3D environment. 

Text is annotated according to a small set of categories as listed in Table 1. Each category is chosen and 

defined in a manner such that automatic information extraction processes may be used for the creation of 

annotations over fiction text (Glass and Bangay, 2005, 2006). The format of the annotations supports 

additional human manipulation to further refine the animation. The remainder of this paper assumes the 

existence of such annotations.  

Table 1. Summary of annotation categories 

Category Fields Description 

Avatar - Explicit identification of a character 

Object - Explicit identification of an object 

Setting - Explicit identification of the environment 

Relation type, subject Explicit description of a spatial relation 

Transition type, subject, object Explicit indication of entry to or exit from the scene 
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Figure 1. Example of annotated fiction text, sourced from The Famous Five: Five on a Treasure Island by Enid Blyton 

Figure 1 presents an example of annotated fiction text. Fiction writing tends assume much implicit 

knowledge, and therefore any details not explicitly mentioned are not automatically annotated. As a result, 

there is an opportunity for manual intervention in the process during which human creativity may be used to 

insert further annotations into a scene.  

After a survey of previous approaches to text-to-scene conversion (Section 2), we describe the steps used 

in our approach. The first step in generating 3D animations from annotated fiction text is the automatic 

translation of annotations into abstract constraints (Section 3), from which a set of quantified constraints is 

derived and solved using interval methods (Section 4). The scene specification is used to instantiate a 3D 

virtual environment, which is rendered into a final animation (Section 5). We present and assess examples of 

automatically produced animations in Section 6. 

2. RELATED WORK 

Of the existing research available in the field of Text-to-Scene conversion, three notable systems exist that 

produce animations from natural language input. The SWAN system converts stories expressed in natural 

language to 3D animations, but requires that input be expressed in simplified Chinese language (Lu and 

Zhang, 2002). The CARSIM system converts road accident reports into corresponding 3D animations, but is 

restricted to the car accident domain (Johansson et al., 2005). CARSIM and SWAN are notable in the fact that 

the exposition of the natural language input is in story form, that is, consisting of a sequence of descriptions 

and events, but neither of these systems use text sourced from popular fiction. The CONFUCIUS system, 

however, is capable of converting single sentences, possibly sourced from fiction books into corresponding 

animations (Ma, 2006). Both SWAN and CONFUCIUS make use of intricate knowledge-bases that provide the 

ability for reasoning with regards to the automatic interpretation of text and the layout of a scene. A result of 

this is the ability to generate highly detailed animations, but require some restriction in the form of input as 

well as substantial effort in the creation of the knowledge-base. We present an alternative method in which 

the degree of world knowledge required for the automatic conversion process is kept to a minimum, rather 

leaving this aspect to human creativity.  

Other systems exist for producing 3D graphics from natural language sources, but none include the aspect 

of time nor use fiction text as input. Such systems include the 3DSV project (Zeng et al., 2003, 2005) and 

WordsEye (Coyne and Sproat, 2001). Other natural language visualisation approaches exist, including the 

use of images (Joshi et al., 2004; Glass et al., 2007), and the general use of natural language as an interface 

for graphical systems (Clay and Wilhelms, 1996; Badler et al., 2000).  

Our work is the first to transform text sourced from popular fiction into corresponding 3D animations 

without prior language simplification. This research proposes a new phrasing for input of the Text-to-Scene 

conversion problem, particularly transforming annotated fiction text into animations, as opposed to 

conventional techniques that create a number of intermediate semantic representations (for example, 

predicate argument structures or semantic frames (Coyne and Sproat, 2001)) from natural language. 

3. CONVERTING ANNOTA TIO NS TO ABSTRACT CONSTRAINTS  

The process of abstract constraint creation is illustrated in Figure 2. The different classes of annotation are 

used to progressively develop scene descriptions. Setting annotations are used to segment the input text into a 

number of scenes. Avatar and object annotations are used to compile a list of entities that occur in each 

scene. Relation and transition annotations are then used to generate a list of abstract constraints that 

They had it on the top of a hill, in a sloping field that looked down into a sunny <setting>valley</setting>. 

<avatar>Anne</avatar> didn't very much like a big brown <object>cow</object> who <transition 
type='ARRIVE ' subject='cow'>came</transition> up <relation type='near' subject='cow'  
object='her'>close<relation> and stared at her, but it <tr ansition type='DEPART'  
subject='it'> went</transition> away when <avatar>Daddy</avatar> told it to. 
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summarise the layout of the scene. Abstract constraints are then converted to mathematical constraint 

expressions. The solutions to the latter provide the well defined trajectories of objects in the scene.  

 

 

Figure 2.  Illustration of the correction points for the abstract constraint creation process. 

 

Figure 3. Example set of abstract constraints 

An entity descriptor is created for every unique avatar and object annotation that occurs in a scene. Entity 

descriptors assign a geometric model (see Section 5), sourced from a library of pre-built models, to each 

avatar or abject entity. The descriptor also associates an initially unconstrained trajectory to the entity, 

expressed in terms of a number of variables that represent the motion of the model through 3D space. By 

default objects are static and are fixed at an as yet undetermined position, while avatars are assigned 

trajectories that permit motion. 

A pointer must be created between words in the text referring to a particular entity and the descriptor for 

that entity. All instances of such co-reference must be resolved before relation and transition annotations can 

be converted to constraints. Instances of personal pronominal anaphora (such as “he”) are resolved by 

maintaining state containing the last explicitly mentioned male and female avatars and matching the gender 

of the anaphora with the corresponding element in the state vector. Other co-references are resolved by 

matching the corresponding word with characteristics of the avatars/objects that have been previously 

annotated.  

Transition and relation annotations are translated into abstract constraints, examples of which are 

presented in Figure 3. Each abstract constraint is phrased in terms of the type field of the annotation from 

which it is derived, as well as the descriptors of the involved entities. For transitions the type may be either 

ARRIVAL or DEPARTURE, while relations may be of type NEAR, INSIDE, NO_COLLIDE, BEHIND, 

IN_FRONT_OF, TO_LEFT_OF and TO_RIGHT_OF. Explicit constraints are derived directly from 

transition and relation annotations, while implicit constraints are created using an automated heuristic 

approach to enforce world constraints.  

If the first transition constraint for an entity is an ARRIVE at some time greater than zero, then a 

DEPART transition constraint is inserted from zero to the start-time of the first constraint, to ensure that the 

entity is initially outside the scene. Any entities that are not constrained by a transition constraint are 

automatically assigned an ARRIVE constraint for the duration of the scene to ensure that they appear in the 

scene. Implicit NO_COLLIDE constraints are added for every pair of entities in the scene, lasting for the 

duration of the scene to ensure that entities do not interpenetrate at any point. The one exception is the case 

where one entity is INSIDE another entity. 

A time interval is associated with the constraint that specifies the period over which the constraint should 

hold with respect to the duration of the animation. Timing information is derived using an audio narration of 

the text acquired from a speech synthesiser. Each language unit in the book takes a finite interval of time to 

be read, from which a time-line may derived for the presentation of the book. Since each scene is constructed 

of a sequence of tokens, the total time taken for the sounding of the corresponding audio provides a value for 

CONSTRAINT 1:      CONSTRAINT 2:      CONSTRAINT 3:      CONSTRAINT 4: 
 Subject: MAN       Subject: MAN       Subject: MAN       Subject: MAN 
 Relation: OUTSIDE  Relation: INSIDE   Relation: NEAR     Relation: NEAR 
 Object: ROOM       Object: ROOM       Object: TABLE      Object: CHAIR 
 Start-time: 0      Start-time: 5      Start-time: 9      Start-time: 14 
 End-time: 5        End-time: 30       End-time: 14       End-time: 30 
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the scene duration, as well as a time-value for each token. Starting times for abstract constraints are derived 

from transition and relation annotations corresponding to the time-value of the annotated token. Ending times 

are based on the duration of the scene by default, but for transition constraints they are set to the starting time 

of a subsequent transition constraint applied to the same entity. Relation constraints may also be terminated 

by subsequent DEPARTURE transition constraints. 

Once the abstract constraint list has been created, it may be modified manually to insert constraints 

regarding the scene that are not explicitly stated in the text. Opportunities exist for further creative input at 

several points in the abstract constraint creation process, as shown in Figure 2. The human readable format 

used for expressing abstract constraints supports direct modification. 
 

 

Figure 4. Illustration of constraint system segmentation 

4. QUANTIFIED CONSTRAINT SYSTEMS  

A set of abstract constraints such as those presented in Figure 3 is converted into a system of expressions that 

constrain the trajectories of the entities involved in the constraints (Glass et al., 2007). For example, MAN 

NEAR TABLE over interval [9,14] would be specified as a relation between the location of the two objects’ 

bounding spheres (of radius rMAN  and rTABLE  respectively) over a specific time interval, expressed in terms of 

the Euclidean distance, as follows: 

 
 

where RMAN(t)  and RTABLE(t)  are the trajectories of MAN and TABLE as functions of time respectively.  

Trajectories are expressed as curves of degree n. The higher the degree the more difficult the constraint 

solving process becomes. To counter this, the trajectory of each model is segmented into chains of lower 

degree curves (Christie et al., 2002). At present we find that a satisfactory trade-off between performance and 

quality is achieved with the use of chains of first degree curves.  

Figure 4 illustrates graphically the abstract constraint system of Figure 3 and indicates how the constraints 

are segmented into a chain of 7 constraint systems. Initially a unique system is created for each contiguous 

time interval, by dividing the duration of the scene into intervals. For each interval, a single set of constraints 

is applicable over the full duration of that interval. A transitional system is inserted between adjacent 

intervals allowing a period during which both sets of constraints must be satisfied so that model locations 

blend smoothly from one interval to the next. To facilitate efficient constraint solving, the ending locations 

for each interval are used as starting locations for solving the following constraint system.  

Constraint solving establishes the trajectory for each entity, which may then be traced in a 3D space, 

defining the motion of the model through a scene. Constraints are phrased over a universally quantified time 

interval, and this in conjunction with an interval-based constraint optimization algorithm (based on the 

universally quantified constraint solver developed by Benhamou et al. (2004)) guarantees that a solution is 
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valid for every point during the time interval, even when the constraint systems are non-linear. A benefit of 

the optimization-based approach is that it provides approximate solutions even for constraints resulting from 

inconsistent annotations, and also produces useful intermediate solutions if limited processing time is 

available.  
 

    (a) Constraint system illustrated                               (b)  Three incremental constraint systems 

                as weighted graph   

       

Figure 5. Illustration of incremental constraint solving 

Each constraint system resulting from the segmentation process is solved in an incremental fashion. All 

constraints involving static objects are solved first, followed by those involving dynamic objects. This is 

achieved by representing the scene as a weighted graph where nodes represent entities, and edges represent 

constraints. Edges are given increasing weights according to whether the adjacent entities are scenes, objects 

or avatars. The order in which constraints are solved is determined by the weights of the corresponding 

edges. Figure 5 illustrates this process, where in each step the highlighted entities represent trajectories for 

which solutions have already been found. 

We find that trajectory chaining in conjunction with incremental system solving results in constraint 

systems that can be rapidly solved using the quantified interval-based constraint optimization algorithm. The 

results of this step are well defined trajectories for all entities. 

5. AUTOMATIC ANIMAT ION ASSEMBLY  

Once trajectories have been quantified for a set of scenes, we automatically create a graphical representation 

of the annotated text. The 3D environment is created and populated and the final animation is sequenced.  

Humanoid models are chosen for avatars, while object models are located automatically by matching the 

annotation with keywords associated with each model in the library. The annotated token associated with an 

object is used as search term when querying the model library. If a model’s keywords match the token then 

the model is chosen to represent the object. If no matching keyword exists, then all the synonyms of the term 

returned using WordNet (Fellbaum, 1998) are tried. If no match exists in this case then the immediate 

hypernym of the term is used as a search term. The process of generalisation continues until the term can no 

longer be generalised, and a default placeholder object is selected (a cube).  

We make use of the setting annotation to automatically create background geometry using procedural 

methods. In particular, three types of setting are defined, namely terrain, room, and city. Using WordNet 

(Fellbaum, 1998), a setting annotation may be associated with one of these categories. In particular if a 

setting annotation is a hyponym of the term “geological formation” or “geological area” it is classified as a 

terrain. Any term with the hypernym “urban area” is classified as a city, while any term with the hypernym 

“room” is classified as a room. Terrain geometry is created automatically using a method adapted from recent 

work by Belhadj (2007), which allows the creation of realistic looking terrain around pre-defined points. 

Using this approach terrain can be specified to “support” all entities in the scene. Procedural city generation 

is implemented based on work by Parish and Muller (2001), but at this stage this method only produces 

gridiron road patterns, with textured cubes as buildings. Rooms are generated through the creation of 

geometry defining four walls and a floor, textured, and containing openings where entities enter or exit the 

scene. 
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Animation assembly is performed in the Blender modeling package1  which is an open source 3D 

modeling and animation tool that provides a Python scripting interface as well as a video sequencing editor. 

The scripting interface is used to convert trajectories and object descriptors produced by the previous stages 

into 3D environments. 

Blender allows for the creation of multiple 3D environments, conveniently called scenes. As such, every 

scene identified in the text is created as a separate 3D environment in Blender, from which segments may be 

rendered and placed into the video sequencer along with subtitles and audio. Subtitles, audio narrations and 

foleys are also generated automatically (Glass et al., 2007).  

The model library is an archive of existing Blender files containing object geometry, materials, armatures 

and motion capture data which can be linked into new scenes. Models in the library may be modified by the 

scripting environment to create customised characters for each avatar, changing clothing and hair colouring 

for example. 

Positioning and motion within the 3D environment is controlled using Blender’s interpolation (IPO) 

curve structure, which defines a model’s translation in a scene in terms of an independent curve for each 

dimension. Each sampled location point from the entity’s trajectory defines a point on the corresponding IPO 

curve. The orientation of each model is modified concurrently to always face the direction of motion. 

Depending on the velocity of the model at each point, the appropriate pose (for example stand, walk or run) 

for the models is selected automatically. 

6. RESULTS 

We present extracts from a fiction book that have been converted to animation sequences using the process 

described in this paper. Figure 6 presents snapshots based on the annotated text example of Figure 1. Figure 7 

presents another example from the same book.  

The nature of the manual intervention is indicated in each figure. Examples of the changes that have been 

applied in each stage of the process include: re-annotating the cow as an avatar rather than a static object in 

Figure 6; manual resolving of the pronoun “it” to the cow object in Figure 6 and distinguishing between the 

two male avatars in Figure 7; and removing extraneous models in the scenes created in Blender. In 

comparison to the amount of effort that would be otherwise involved in creating these scenes manually, these 

changes are accomplished quickly and easily. 

The presented examples are ideal in that they contain explicit instances of the particular annotation 

categories. In extracts containing less explicit descriptions, the process still generates a 3D animation, 

however the correlation between the descriptions and the animation may be more difficult to identify. In 

these cases additional manual input is advisable.  

   

Manual intervention: 1 of 12 model descriptors modified; 2 of 12 co-references corrected; 0 of 68 abstract 

constraints added; 3 models deleted from 3D scene. 

Figure 6. Cow scene from The Famous Five: Five on a Treasure Island by Enid Blyton 

                                                 
1Available at http://www.blender.org/ 
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Manual intervention: 1 manual specification of setting (namely, “study”); 0 of 8 model descriptors modified; 8 of 

40 co-references resolved manually; 0 of 45 abstract constraints modified; 1 model deleted from 3D scene. 

Figure 7. Study scene from The Famous Five: Five on a Treasure Island by Enid Blyton 

Figure 7 presents an example in which a room setting is created, and which requires the correct layout of 

objects in the scene. Notice that the table is behind the chair as specified, and how the model representing 

Julian moves to the correct locations according to the annotations. The motion of avatars is continuous but 

their speed is erratic due to the intervals allocated which are completely determined by the time taken to read 

the corresponding fragment of text. 

An additional extract is presented in Figure 8 demonstrating the automatic creation of an animation 

containing multiple scenes, including two distinct rooms and a city. Figure 8 is an example in which human 

creativity is applied in the form of an additional abstract constraint specifying ANNE INSIDE BED, since 

this fact is not explicitly stated in the text. This demonstrates that world knowledge may be easily applied to 

an automatically created scene through manual intervention, removing the requirement for a complex 

knowledge-base.  
 

   
 

 

Figure 8. Travel sequence from The Famous Five: Five on a Treasure Island by Enid Blyton 

 

 

<avatar>Dick</avatar> and <avatar>Julian</avatar>, who shared a <setti ng>room</setti ng>, woke up at 

about the same moment, and stared out of the nearby window. …  <avatar>Anne</avatar> slept in the next 

<setting>room</setting>. <avatar>Julian</avatar> ran <tr ansition type='ARRIVAL' subje ct='Julian'>in 
</transition>  and shook her.…Along the crowded <setting>Lon don</setting>  roads they went, slowly at first… 

He stole <transition t ype='ARRIVAL' subject='He'> in</transition>. His <avatar>uncle</avatar> still 

snored. He tiptoed by him <relation type='NEAR' subject='he' object='table'>to</relation> the 

<object>table</object> <relation type='BEHI ND' subject='table' object='chair '>behind</relation> his 

uncle's <object>chair< /object>. 
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7. CONCLUSION  

We present examples of 3D animated scenes constructed from annotated fiction text. The process readily 

allows for creative input from human directors to add artistic vision and external world knowledge. Abstract 

constraints are derived from suitably annotated fiction text and these are used to restrict the form of object 

trajectories within the scene. We outline a process for determining these trajectories using a quantified 

interval-based constraint optimization algorithm that produces solutions valid over continuous time intervals 

while bounding the amount of processing required. Annotations and trajectories are used in combination with 

a detailed model library for the instantiation of 3D environments. To our knowledge the research presented 

here is the first to describe a system that converts extensive extracts from popular fiction into corresponding 

animations.  

Future work includes investigation into additional annotation categories, and further improvements in the 

generation of procedural models.  
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