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ABSTRACT 

This paper describes a strategy for automatically converting fiction text into 3D animations. It assumes the existence of 
fiction text annotated with avatar, object, setting, transition and relation annotations, and presents a transformation 
process that converts annotated text into quantified constraint systems, the solutions to which are used in the population 
of 3D environments. Constraint solutions are valid over temporal intervals, ensuring that consistent dynamic behaviour is 
produced. A substantial level of automation is achieved, while providing opportunities for creative manual intervention in 
animation process. The process is demonstrated using annotated examples drawn from popular fiction text that are 
converted into animation sequences, confirming that the desired results can be achieved with only high-level human 
direction.   

KEYWORDS 

Text to scene conversion, story visualization, computer graphics, constraint optimization. 

1. INTRODUCTION 

Popular fiction books describe rich visual environments that contain characters, objects, and behaviour. 
The conversion of fiction text to a unified multi-modal animation is a difficult and subjective process which 
requires substantial human intervention at every step of the process (as evidenced by the lengthy list of 
credits at the end of any film).  

Some steps in the process stand to benefit from automation, freeing the human component to concentrate 
on the creative aspects. Technologies already exist that reduce the effort required for the creation of animated 
graphics, including key-frame animation, inverse-kinematics, motion capture, and fluid and cloth 
simulations. Additional tasks stand to benefit from automation, including the analysis and interpretation of 
language and the population of corresponding virtual environments, while still allowing directorial 
intervention consistent with the constraints in the scene. 

 

 

Figure 1.  Overview of the tasks that can benefit from automation. 



An overview of the possible tasks that can benefit from automation is provided in Figure 1. They include 
transforming the natural language text into an intermediate representation, and thereafter transforming this 
representation into a populated 3D environment. 

The first task of converting fiction text into an intermediate representation is detailed by Glass (2008). 
The intermediate representation consists of the original text that is annotated in the categories summarized in 
Table 1. Each category is chosen and defined in a manner such that automatic information extraction 
processes may be used for the creation of annotations over fiction text (Glass and Bangay, 2005, 2006). The 
format of the annotations supports additional human manipulation to further refine the animation.  

 

Table 1. Summary of annotation categories. 

Category Fields Description 
Avatar - Explicit identification of a character 
Object - Explicit identification of an object 
Setting - Explicit identification of the environment 
Relation type, subject Explicit description of a spatial relation 
Transition type, subject, object Explicit indication of entry to or exit from the scene 

 
Existing work demonstrates that the use of a hierarchical rule-based learning system is capable of creating 

these annotations in a manner that matches a particular human’s manually-created annotations with 
accuracies ranging between 51.4% and 90.4% (Glass, 2008).  Experience has shown that annotations cannot 
be defined as categorically “incorrect”, because the idea of correctness differs from one human to the next. 
The remainder of this paper assumes the existence of the annotations summarized in Table 1, but does not 
make assumptions about the completeness or correctness (with regards to any particular person) of the 
annotations. 

 

 
Figure 2. Example of annotated fiction text, sourced from The Famous Five: Five on a Treasure Island by Enid Blyton. 

 

An example of annotated fiction text is presented in Figure 2. Fiction writing tends assume much implicit 
knowledge, and therefore any details not explicitly mentioned are not automatically annotated. As a result, 
there is an opportunity for manual intervention in the process during which human creativity may be used to 
insert further annotations.  

In this paper, we present a process for transforming annotated fiction text into 3D animations. This is 
done by formulating time-quantified constraints with regards to objects in the scenes, the solutions to which 
are used to specify layout, appearance and motion within a 3D environment. 

After a survey of previous approaches to text-to-scene conversion (Section 2), we describe the steps used 
in our approach. The first step in generating 3D animations from annotated fiction text is the automatic 
translation of annotations into abstract constraints (Section 3), from which a set of quantified constraints is 
derived and solved using interval methods (Section 4). The scene specification is used to instantiate a 3D 
virtual environment, which is rendered into a final animation (Section 5). We present our experimental 
methodology in Section 6, and assess examples of automatically produced animations in Section 7. 

2. RELATED WORK 

The task of converting natural language text into graphical formats is generally differentiated according to 
the type of textual input and the type of output (Glass, 2008). Types of textual input include language similar 
input, which resembles natural language, but has a formal structure  (Clay and Wilhelms, 1996);  commands, 
that explicitly target entities in the environment and describe modifications to their properties using natural 
language (Badler et al., 2000); descriptive instructions, that use short natural language statements to describe 

They had it on the top of a hill, in a sloping field that looked down into a sunny <setting>valley</setting>. 
<avatar>Anne</avatar> didn't very much like a big brown <object>cow</object> who <transition 
type='INSIDE' subject='cow'>came</transition> up <relation type='near' subject='cow'  
object='her'>close<relation> and stared at her, but it <transition type='OUTSIDE'  
subject='it'>went</transition> away when <avatar>Daddy</avatar> told it to. 



how a scene should appear (Coyne and Sproat, 2001); and narrative, that is running text written in story-form 
(Johansson et al., 2005). Types of graphical output include sequences of corresponding photographs (Zhu et 
al., 2007); static images rendered from 3D scenes (Coyne and Sproat, 2001; Zeng et al., 2003, 2005; 
Seversky and Yin, 2006); and animated 3D environments (Lu and Zhang, 2002; Johansson et al., 2005; Ma, 
2006). 

Fiction text presents language in narrative form and involves a temporal component. Three notable related 
systems exist that handle input text in a similar form, namely SWAN (Lu and Zhang, 2002), CARSIM 

(Johansson et al., 2005), and CONFUCIUS (Ma, 2006).  
The SWAN system converts stories expressed using natural language to 3D animations, requiring that 

input be expressed in simplified Chinese language (Lu and Zhang, 2002). The CARSIM  system converts road 
accident reports into corresponding 3D animations, where input is restricted to the car accident domain 
(Johansson et al., 2005). CARSIM  and SWAN are notable in the fact that the exposition of the natural language 
input is in story form (although neither use fiction books as immediate sources of input). The CONFUCIUS 
system is capable of converting single sentences, possibly sourced from fiction books into short multi-modal 
animations (Ma, 2006).  

Both SWAN and CONFUCIUS make use of detailed knowledge-bases that provide the ability for reasoning 
with regards to the automatic interpretation of text and the layout of a scene. A result of this is the ability to 
generate highly detailed animations, but require some restriction in the form of input (limited to what the 
knowledge base supports) as well as substantial effort in the creation of the knowledge-base. We present an 
alternative method in which the degree of world knowledge required for the automatic conversion process is 
kept to a minimum, rather leaving this aspect to human creativity.  

Our work, which we term fiction-to-animation, is the first to transform text sourced from popular fiction 
into corresponding 3D animations without prior language simplification. This research examines a new 
perspective of the text-to-graphics conversion problem: transforming annotated fiction text into animations, 
as opposed to conventional techniques that convert knowledge-rich intermediate semantic representations 
(for example, predicate argument structures or semantic frames (Coyne and Sproat, 2001)) into animations. 

The techniques described in this article cover the final phase of the larger fiction-to-animation conversion 
process, first described by Glass (2008). This research is the first to handle the quantity and complexity of 
textual input presented by unrestricted fiction text, while producing multi-modal, multi-scene representations 
of the text. 

3. ANNOTATIONS TO STRUCTURED SCENE DESCRIPTIONS  

Fiction text describes a sequence of scenes, each of which contains a number of characters and objects 
that perform behaviours. The text describing each of these elements is indicated by the annotations. In spite 
of the existence of these annotations, there is still insufficient structure and information to automatically 
construct corresponding 3D environments.  

This section describes the knowledge-poor techniques used to convert annotated text into structured scene 
descriptions that are both human readable (for manual intervention where needed) but sufficiently structured 
for subsequent processing. High-level scene descriptions include the following elements: a list of scenes to be 
instantiated; the contents of each scene (specified using entity descriptors); and the behaviour of entities in 
each scene (specified using abstract constraints). 

The process of deriving scene descriptions is illustrated in Figure 3, and contains a number of points at 
which a human can provide his or her own interpretation of the text. The different classes of annotation are 
used to progressively develop scene descriptions. Setting annotations are used to segment the input text into a 
number of scenes. Avatar and object annotations are used to compile a list of entities that occur in each 
scene. Relation and transition annotations are then used to generate a list of time quantified abstract 
constraints that summarize the layout and behaviour in the scene.  



 

 
Figure 3. Illustration of the abstract constraint creation process. 

 

We define a scene to correspond to a single physical location. The setting annotation (indicated in Table 
1) is used to segment the text into contiguous portions that describe a single physical location. The setting is 
not always explicitly stated in fiction text, however, resulting in the absence of an automatically created 
setting annotation. Human interpretation is encouraged at this point to indicate non-explicit scene changes. 

An entity descriptor is created for every unique avatar and object annotation that occurs in a portion of 
scene text. Entity descriptors assign a geometric model (see Section 5), sourced from a library of pre-built 
models, to each avatar or object entity. The descriptor also associates an initially unconstrained trajectory to 
the entity, expressed in terms of a number of uninitialized variables that represent the motion of the model 
through 3D space. By default, objects are static and are fixed at an initially undetermined position, while 
avatars are assigned trajectories that permit motion. 

Before behaviours can be assigned to entities, a pointer must be created between words in the text that 
refer to a particular entity and the descriptor for that entity. All instances of such co-reference must be 
resolved before relation and transition annotations can be converted to constraints. Instances of personal 
pronominal anaphora (such as “he”) are resolved by maintaining state containing the last explicitly 
mentioned male and female avatars and matching the gender of the anaphora with the corresponding element 
in the state vector. The pronoun “it” is resolved to the last-mentioned object.  Co-references in the form of 
explicit names in the text are resolved by matching the corresponding word with a list of keywords in the 
entity descriptor. 

The last step of the process is the creation of abstract constraints from transition and relation annotations, 
expressed in the manner illustrated in Figure 4. Each abstract constraint is phrased in terms of the type field 
of the annotation from which it is derived, as well as the descriptors of the involved entities. For transitions 
the type may be either INSIDE or OUTSIDE, while relations may be of type NEAR, IN_FRONT_OF, 
BEHIND, TO_LEFT_OF, TO_RIGHT_OF, ON_TOP_OF and BELOW.  

 

 

Figure 4. Example set of abstract constraints. 
 

Explicit constraints are derived directly from transition and relation annotations, while implicit constraints 
are created using an automated heuristic approach to enforce world constraints. If the first constraint for an 
entity is of type INSIDE at a time greater than zero, then an implicit OUTSIDE constraint is inserted from 
time 0 to the start-time of the first constraint, to ensure that the entity is initially outside the scene. Any 
entities that are not constrained by a transition constraint are automatically assigned an implicit INSIDE 
constraint for the duration of the scene to ensure that they appear in the scene. Implicit NO_COLLIDE 
constraints are added for every pair of entities in the scene, lasting for the duration of the scene to ensure that 
entities do not interpenetrate at any point.  

The time interval associated with each constraint in Figure 4 specifies the period over which the 
constraint should hold with respect to the duration of the animation. Timing information is derived using an 

CONSTRAINT 1:      CONSTRAINT 2:      CONSTRAINT 3:      CONSTRAINT 4: 
 Subject: MAN       Subject: MAN       Subject: MAN       Subject: MAN 
 Relation: OUTSIDE  Relation: INSIDE   Relation: NEAR     Relation: NEAR 
 Object: ROOM       Object: ROOM       Object: TABLE      Object: CHAIR 
 Start-time: 0      Start-time: 5      Start-time: 9      Start-time: 14 
 End-time: 5        End-time: 30       End-time: 14       End-time: 30 



audio narration of the text acquired from a speech synthesizer. Each language unit in the book takes a finite 
interval of time to be vocalized, from which a time-line is derived for the presentation of the book. Since 
each scene is constructed of a sequence of tokens, the total time taken for the sounding of the corresponding 
audio provides a value for the scene duration, as well as a time-value for each token. Starting times for 
abstract constraints are derived from transition and relation annotations corresponding to the time-value of 
the annotated token (illustrated in Figure 5). Ending times are based on the duration of the scene by default, 
but for transition constraints they are set to the starting time of a subsequent transition constraint applied to 
the same entity. Relation constraints are also terminated by subsequent OUTSIDE transition constraints.  

 

 

Figure 5. Illustration of the relationship between the time-line derived from speech-synthesized text and 
annotations. 

 

Once the abstract constraint list has been created, it may be modified manually to insert constraints 
regarding the scene that are not explicitly stated in the text. The human readable format used for expressing 
abstract constraints supports direct modification.  

The automatically generated scene descriptions are sufficiently formal to permit the automatic creation of 
corresponding virtual worlds. However, before a virtual environment can be instantiated for each scene, 
precise values that quantify the behaviour in each virtual environment must be calculated. 

4. QUANTIFIED CONSTRAINT SYSTEMS  

A set of abstract constraints such as those presented in Figure 4 is converted into a system of expressions 
that constrain the trajectories of the entities involved in the constraints (Glass et al., 2007). Each transition 
and relation type is associated with a particular quantified constraint expression.  

For example, MAN NEAR TABLE over interval [9,14] would be specified as a relation between the 
locations of the two objects’ bounding spheres (of radius ���� and ������ respectively) over a specific time 
interval, expressed in terms of the Euclidean distance, as follows: 

 

	
����� − 
�������	� < ����� − ������ + ��∀� ∈ �9,14� 
 

where 
����� and 
������� are the trajectories of MAN and TABLE as functions of time respectively.  � 
is the minimum distance considered to verify the term “near”. We derived a similar noCollide expression in a 
similar manner, and also a directionRelation expression for handling relation types such as IN_FRONT_OF 
and TO_LEFT_OF (Glass, 2008). 

Each abstract constraint presented in Figure 4 is converted into a corresponding expression, and the 
conjunction of these constraints for a single scene forms a system of constraints.  

Trajectories are expressed as curves of degree n. The higher the degree the more difficult the constraint 
solving process becomes. To counter this, the trajectory of each model is segmented into chains of lower 
degree curves (Christie et al., 2002). At present we find that a satisfactory trade-off between performance and 
quality is achieved with the use of chains of first degree curves.  
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Figure 6 illustrates graphically the abstract constraint system of 
are segmented into a chain of 7 constraint systems. Initially a unique system is created for 
time interval by dividing the duration of the scene into intervals. For each interval, a single set of constraints 
is applicable over the full duration of that interval. A 
intervals allowing a period during which both sets of constraints must be satisfied so that model locations 
blend smoothly from one interval to the next. To facilitate efficient constraint solving, the ending locations 
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Constraint solving establishes the trajectory for each entity, which 
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Each constraint system resulting from the segmentation process is solved in
constraints involving static objects are solved first, followed by those involving dynamic objects. This is 
achieved by representing the scene as a weighted graph where nodes represent entities, and edges represent 
constraints. Edges are given increasing weights according to whether the adjacent entities are scenes
objects (2) or avatars (3).  

 
Figure 6. Illustration of constraint system segmentation 

illustrates graphically the abstract constraint system of Figure 4 and indicates how the constraints 
are segmented into a chain of 7 constraint systems. Initially a unique system is created for 
time interval by dividing the duration of the scene into intervals. For each interval, a single set of constraints 
is applicable over the full duration of that interval. A transitional system is inserted between adjacent 

a period during which both sets of constraints must be satisfied so that model locations 
blend smoothly from one interval to the next. To facilitate efficient constraint solving, the ending locations 
for each interval are used as starting locations for solving the following constraint system. 

Constraint solving establishes the trajectory for each entity, which is then traced in a 3D space, defining 
the motion of the model through a scene. Constraints are phrased over a universally quantified time interval,

solutions or approximations are calculated using an interval-based constraint 
based on the universally quantified constraint solver developed by Benhamou et al. (2004)
guarantees that a solution is valid for every point during the time interval, even when the 
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approximate solutions even for constraints resulting from conflicting annotations (meaning tha
do not have to be completely “correct”), and also produces useful intermediate solutions if limited processing 

     

) Constraint system illustrated                               (b) Three incremental constraint systems. 

Figure 7. Illustration of incremental constraint solving. 

Each constraint system resulting from the segmentation process is solved in an incremental fashion. All 
constraints involving static objects are solved first, followed by those involving dynamic objects. This is 
achieved by representing the scene as a weighted graph where nodes represent entities, and edges represent 

Edges are given increasing weights according to whether the adjacent entities are scenes

 

and indicates how the constraints 
are segmented into a chain of 7 constraint systems. Initially a unique system is created for each contiguous 
time interval by dividing the duration of the scene into intervals. For each interval, a single set of constraints 

system is inserted between adjacent 
a period during which both sets of constraints must be satisfied so that model locations 

blend smoothly from one interval to the next. To facilitate efficient constraint solving, the ending locations 
ving the following constraint system.  

then traced in a 3D space, defining 
the motion of the model through a scene. Constraints are phrased over a universally quantified time interval, 

based constraint optimization algorithm 
based on the universally quantified constraint solver developed by Benhamou et al. (2004). 

valid for every point during the time interval, even when the 
based approach is that it provides 

(meaning that annotations 
, and also produces useful intermediate solutions if limited processing 

 

 

an incremental fashion. All 
constraints involving static objects are solved first, followed by those involving dynamic objects. This is 
achieved by representing the scene as a weighted graph where nodes represent entities, and edges represent 

Edges are given increasing weights according to whether the adjacent entities are scenes (1), 



The order in which constraints are solved is determined by the weights of the corresponding edges. 
7 illustrates this process, where in each step the highlighted entities represent trajectories for which solutions 
have already been found. 

We find that trajectory chaining in conjunction with incremental system solving results in constraint 
systems that can be rapidly solved using the quantified interval
results of this step are well defined trajectories for all entities.
the set of constraints in Figure 4 
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Figure 8. Visualization of a complex trajectory as a sequence of low degree curves.
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method only produces grid-iron road patterns, with textured cubes as buildings. Rooms are generated
the creation of geometry defining four walls and a floor, textured, and containing openings where entities 
enter or exit the scene. 

Animation assembly is performed in the Blender modeling package
http://www.blender.org/)
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illustrates this process, where in each step the highlighted entities represent trajectories for which solutions 

We find that trajectory chaining in conjunction with incremental system solving results in constraint 
an be rapidly solved using the quantified interval-based constraint optimization

results of this step are well defined trajectories for all entities. A visualization of the trajectory produced for 
 is presented in Figure 8. 
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. Visualization of a complex trajectory as a sequence of low degree curves.

Validation of the intermediate processes described in this section and Section 3, especially regarding the 
based constraint optimizer, is available in other work (Glass, 2008). 

AUTOMATIC ANIMATION ASSEMBLY  

Once trajectories have been quantified for a set of scenes, we automatically create a graphical 
representation of the annotated text. The 3D environment is created and populated and the final animation is 

Models are automatically selected for each entity from a library containing pre
standardized models. Humanoid models are chosen for avatars, while object

automatically by matching the annotation with keywords associated with each model in 
annotated token associated with an object is used as search term when querying the model library. If a 
model’s keywords match the token then the model is chosen to represent the object. If no matching keyword 
exists, then all the synonyms of the term returned using WordNet (Fellbaum, 1998) are tried. If no mat
exists in this case then the immediate hypernym of the term is used as a search term. The process of 
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iron road patterns, with textured cubes as buildings. Rooms are generated
the creation of geometry defining four walls and a floor, textured, and containing openings where entities 

Animation assembly is performed in the Blender modeling package
http://www.blender.org/) which is an open source 3D modeling and animation tool that provides a 

The order in which constraints are solved is determined by the weights of the corresponding edges. Figure 
illustrates this process, where in each step the highlighted entities represent trajectories for which solutions 

We find that trajectory chaining in conjunction with incremental system solving results in constraint 
optimization algorithm. The 
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Python scripting interface as well as a video sequencing editor. The scripting interface is used to convert 
trajectories and object descriptors produced by the previous stages into 3D environments. 

Blender allows for the creation of multiple 3D environments, conveniently called scenes. As such, every 
scene identified in the text is created as a separate 3D environment in Blender, from which segments may be 
rendered and placed into the video sequencer along with subtitles and audio. Subtitles, audio narrations and 
foleys are also generated automatically (Glass et al., 2007).  

The model library is an archive of existing Blender files containing object geometry, materials, armatures 
and motion capture data which can be linked into new scenes. Models in the library are modified by the 
scripting environment to create customized characters for each avatar (for example, changing clothing and 
hair colouring). 

Positioning and motion within the 3D environment is controlled using Blender’s interpolation (IPO) 
curve structure, which defines a model’s translation in a scene in terms of an independent curve for each 
dimension. Each sampled location point from the entity’s trajectory defines a point on the corresponding IPO 
curve. The orientation of each model is modified concurrently to always face the direction of motion. 
Depending on the velocity of the model at each point, the appropriate pose (for example stand, walk or run) 
for the models is selected automatically. 

6. EXPERIMENTAL SETUP 

The measurement of the success of an automatically generated virtual world is a subjective process 
because of different human interpretations of fiction text. The results produced by the scene creation 
processes are visual in nature, and it is unclear which features in a visual scene should be measured for 
quantitative evaluation. 

The problem of evaluating automatically generated scenes is encountered in other research in the text-to-
graphics domain. Most related research performs subjective evaluations through the use of visual examples 
(Coyne and Sproat, 2001; Lu and Zhang, 2002; Zeng et al., 2003; Joshi et al., 2004). In these cases, a small 
set of example images produced from the original text is provided, leaving evaluation to the discretion of the 
reader. 

The only other evaluation method we encounter in related text-to-graphics research is user evaluation, 
where a group of human subjects is asked to rate the visual content produced by the automatic system 
(Johansson et al., 2005; Ma, 2006). However, Johansson et al. (2005) acknowledge that such studies do not 
provide a complete reflection on the capabilities of a system, and results vary greatly from one human to the 
next. We believe that this is because such studies do not objectively evaluate the system. Rather, they 
evaluate both the human as well as the system. Subjectivity is involved in comprehending natural language 
and visual images. The processes we describe are designed to improve in quality given additional time and 
patience of the human. These factors introduce errors into a user-evaluation that are not necessarily caused by 
the automated process, and are therefore not measurable. 

We perform our evaluations using a subjective (but quantitative) evaluation of the manual interventions 
needed to ensure consistency in automatically generated content. We measure consistency as the percentage 
of correctly generated content in relation to the total generated content. In addition, we also follow the 
methods used by WORDSEYE (Coyne and Sproat, 2001), SWAN (Lu and Zhang, 2002), and other text-to-
graphics systems (Zeng et al., 2003; Joshi et al., 2004) in using visual examples as evidence of  the 
correctness of the automated content. We critically evaluate each visual example. However, we maintain that 
the true level of correctness varies from human to human, or according to the adage, is “in the eye of the 
beholder”. 

The primary source of experimental error for this experimentation is the complexity of the English 
language and its understanding. The annotations produced for the corpus of test data cannot be guaranteed to 
be consistent or correct, and this potentially produces extraneous or surprising artifacts in the automatically 
generated scenes. The subjectivity of image and film comprehension is also a source of experimental error. 
Similar to language comprehension, comprehension of the visual and audio modalities is influenced by 
individual human experience. As such, manual modifications and critical evaluations provided for each result 
are independent to the evaluator, and do not necessarily correlate with another human's opinion. 



We draw six extracts from three different books, written by three different authors. Each extract is 
annotated manually with setting, avatar, object, transition and relation annotations.  

We deliberately limit the produced scene quality to avoid embellishments that are customized to any 
particular example. Also, additional scene detail is described in the text but which is not handled by our set of 
annotation categories. These cases are ignored, pending the creation of the relevant annotations in future 
work. 

7. RESULTS 

For each of the six annotated extracts, we record the amount of automatically generated content and 
compare this with the amount of content that is modified by a human. The type and degree of manual 
intervention with respect to each step of the scene description process (illustrated in Figure 3) is listed in 
Table 2.  

 

Table 2. Degree of consistency for the automatic process for creating scene descriptions over six extracts. 

Extract Scene segmentation Model descriptors Co-reference Abstract constraints 
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1 1 0 100% 12 1 91.67% 12 2 83.33% 68 1 98.52% 
2 1 0 100% 8 2 75.0% 52 15 71.5% 41 1 97.56% 
3 1 1 0% 6 0 100% 40 8 80.0% 45 0 100% 
4 6 2 66.67% 10 0 100% 23 0 100% 41 9 78.0% 
5 1 0 100% 2 0 100% 11 0 100% 4 0 100% 
6 2 0 100% 8 0 100% 28 1 96.43% 44 0 100% 

Summary 12 3 83.33% 46 3 93.47% 166 26 84.33% 243 11 95.47% 
 

Scene segmentation is consistent in the majority of cases, where the only modifications required are the 
insertion of scene segments where none are explicitly stated in the text. The creation of model descriptors is 
also consistent in the majority of cases, and only 3 of the 46 automatically created descriptors are modified 
manually. Co-reference is automatically performed to a high level of accuracy (84.33%), where the primary 
problems encountered are when resolving words such as “boy” to the correct avatar. Only a small number of 
the automatically generated abstract constraints require manual modification. The greatest number of 
modifications is made for extract 6. In this case, constraints are added manually to cater for details not 
explicitly described in the fiction text.  

The degree to which automatically produced content matches the text is justified through the use of visual 
examples. We present snapshots from automatically generated animation sequences using the process 
described in this paper. The corresponding films are available for download from the following site: 
http://www.cs.ru.ac.za/research/g05g1909/. 

Figure 9 presents snapshots based on the annotated text example of Figure 2. Examples of the changes 
that have been applied in each stage of the process include: re-annotating the cow as an avatar rather than a 
static object; manual resolving of the pronoun “it” to the cow object; and removing extraneous models in the 
scenes created in Blender. In comparison to the amount of effort that would be otherwise involved in creating 
this scenes manually, these changes are accomplished quickly and easily. 

 



   

Figure 9. Cow scene from The Famous Five: Five on a Treasure Island by Enid Blyton (extract 1)  
- 3 models manually deleted from the 3D scene. 

 

The cow enters and exits the scene at the correct moments according to the concurrent subtitles, indicating 
the successful conversion of the transition annotations to visual behaviour. The setting is interpreted correctly 
in providing a background suitable for the description “valley”, and the appropriate geometric models appear 
in the virtual environment. 

Figure 10 presents an example from the same book, in which a room setting is created, and which 
requires the correct layout of objects in the scene. Notice that the table is behind the chair as specified, and 
how the model representing Julian moves to the correct locations according to the annotations. This example 
demonstrates that complex behaviour is visualized in the form of correct movement through multiple way-
points. 

 

   

Figure 10. Study scene from The Famous Five: Five on a Treasure Island by Enid Blyton (extract 3) 
- 1 model manually deleted from the 3D scene. 

 

We identify problems with the results in Figure 10, such as the fact that the box is not placed on the table. 
This fact is never explicitly stated in the text however, and the created scene is correct according to the 
annotations. One flaw is the initial location of Quentin, who should be in the chair throughout the scene. This 
constraint is only implemented from the point at which the annotation is encountered in the text, resulting in 
the movement of Quentin to his chair only midway through the scene. 

The extract presented in Figure 11 contains a number of transition annotations describing the behaviour of 
the Rabbit entity. A number of different behaviours are also specified by Relation annotations: Timothy 
rushes towards the Rabbit; the Rabbit moves under a bush; and Timothy follows the rabbit to the bush. The 
combination of these different behaviour types results in complex motion in the virtual environment. The 
sequence of snapshots illustrates the corresponding motion of Timothy towards the rabbit and the subsequent 
motion of the rabbit towards the bush. The images visualize Timothy following the rabbit into the bush. 
 
 

He stole <transition type='INSIDE' subject='He'>in</transitio n>. His <avatar>uncle</avatar> still 
snored. He tiptoed by him <relation type='NEAR' subject='he' object='table'>to</relation> the 
<object>table</object> <relation type='BEHIND' subject='table' object='chai r'>behind</relation>  his 
uncle's <object>chair</object>. 



They were sent to the <object>house</object> of an old <avatar>Professor</avatar> who lived in 
the heart of the <setting>country</setting> … He had no wife and he lived in a very large house with a housekeeper 
called <avatar>Mrs Macready</avatar> and three servants. … 
As soon as they had said good night to the <avatar>Professor</avatar> and gone upstairs on the first 
night, the boys <transition type=“INSIDE” subject=“boys”>came</trans ition>  into the girls' 
<setting>room</setting> and they all talked it over. 

   
 

   

Figure 11. Rabbit scene (1) from The Famous Five: Five on a Treasure Island by Enid Blyton (extract 2) 
- 0 modifications on the final 3D scene. 

 

The results presented in Figure 9, Figure 10, and Figure 11 demonstrates that the behaviour specified by 
transition and relation annotations is successfully converted into visual behaviour that corresponds to the text.  

 

     

 
 

 
 
 
 

Figure 12. House sequence from Narnia: The Lion, the Witch and the Wardrobe by C.S. Lewis (extract 6)  
- 2 objects deleted from the 3D scene representing the room. 

 

"Look! There's a rabbit!" cried <avatar>Dick</avatar>, as a big sandy <object>rabbit</object> 
lolloped slowly across the <setting>yard</setting>. It <transition type=“OUTSIDE” sub- 
ject=“It”>disappeared</transition>  into a hole on the other side. … 
A third rabbit <transition type=“INSIDE” subject=“rabbit”>appeared< /transition> . It was a small one with 
absurdly big ears. … 
But this was too much for <avatar>Timothy</avatar>. ... . He gave an excited <foley>yelp</foley> 
and rushed full-tilt <relation type=“NEAR” subject=“He” object=“rabbit”>a t</relation> the surprised 
rabbit. ... 
It disappeared <relation type=“UNDER” subject=“It” object=“bush”>un der</relation> a 
gorse <object>bush</object> near the children. <avatar>Timothy</avatar> went after it, vanishing <relation 
type=“UNDER” subject=“Timothy” object=“bush”>under</r elation> the big <object>bush</object> too. ... 
 



The extract depicted in Figure 12 is drawn from a different book than the previous extracts, and begins by 
describing the location of the Professor's house and the initial meeting of the characters outside it. The setting 
then changes to inside the house, in one of the rooms. It is evident from the images that scene changes are 
correctly handled according to the setting annotation, demonstrating that our system is capable of producing 
multi-scene animations from fiction text.  

An additional extract is presented in Figure 13 that demonstrates the automatic creation of an animation 
containing multiple scenes, including two distinct rooms and a city. This extract is an example in which 
human creativity is applied in the form of an additional abstract constraint specifying ANNE INSIDE BED, 
since this fact is not explicitly stated in the text. This demonstrates that world knowledge may be easily 
applied to an automatically created scene through manual intervention, removing the requirement for a 
complex knowledge-base.  

 

   
 
 
 
 
 
Figure 13. Travel sequence from The Famous Five: Five on a Treasure Island by Enid Blyton (extract 4)  

- 1 object deleted from the room scene. 
 

We identify some limitations with the process described in this article. Automatic annotations often result 
in the creation of extraneous objects in a scene (evidence of which is indicated by the number of deleted 
objects in each example presented above). For example, the process is unable to relate collective annotations 
such as “children” to a collection of entity descriptors, and instead creates a new avatar. Also, as evident in 
some images, certain semantic conditions are not handled correctly by the automated process (for example, 
ANNE INSIDE BED literally places the ANNE model inside the BED model, and not on top of it). However, 
the only mechanism to counter this problem is the use of encoded world knowledge similar to that used by 
Ma (2006), which is contrary to our knowledge-poor paradigm.  

We also observe that the constraint optimizer, while functioning correctly for curves of low degree (≤ 2), 
is not able to locate solutions to systems containing curves of higher degree within a feasible time. While still 
producing representative behaviour, the currently produced motion could be improved. This can be achieved 
in future by providing additional heuristic optimizations to the constraint solving process.  

In spite of the above limitations, we conclude that corresponding multi-modal animated 3D virtual 
environments and films are successfully created using the processes described in the previous sections. This 
conclusion is supported by the following observations from the experiments conducted in this section: 
1. The creation of high-level scene descriptions (including the identification of scenes, their content, and 

behaviour) is performed consistently, requiring minimal human modification. 
2. Virtual environments are populated in a manner that requires little significant modification. 
3. Automatically generated virtual environments are representative of the input text, specifically with 

regards to the following aspects: 
(a) Behaviour specified by annotation categories such as transition and relation is visualized correctly in 

a virtual environment. 
(b) Visual sequences containing multiple scenes are created that correctly represent descriptions in the 

input text. 
(c) The automated process supports the creation of multi-modal animated 3D virtual environments and 

films across different types of books. 

<avatar>Dick</avatar> and <avatar>Julian</avatar>, who shared a <setting>room</setting>, woke up at 
about the same moment, and stared out of the nearby window. …  <avatar>Anne</avatar> slept in the next 
<setting>room</setting>. <avatar>Julian</avatar> ran <transition type='ARRIVAL' subject='Julian'>in 
</transition>  and shook her.…Along the crowded <setting>London</setting> roads they went, slowly at first… 



8. CONCLUSION 

We present examples of 3D animated scenes that are automatically constructed from annotated fiction 
text. The process readily allows for creative input from human directors to add artistic vision and external 
world knowledge. Abstract constraints are derived from suitably annotated fiction text and these are used to 
restrict the form of object trajectories within the scene. We outline a process for determining these 
trajectories using a quantified interval-based constraint optimization algorithm that produces solutions valid 
over continuous time intervals while bounding the amount of processing required. Annotations and 
trajectories are used in combination with a detailed model library for the instantiation of 3D environments.  

The interpretation of annotations is performed successfully in the creation of high-level structured scene 
descriptions using knowledge-poor approaches. Virtual environments are successfully instantiated and 
populated from scene descriptions using automated techniques. There is no need for repetitive 3D modeling 
and animation, and rich virtual environments are created rapidly. 

To our knowledge the research presented here is the first to describe a system that converts extensive 
extracts from popular fiction into corresponding animations.  We use a knowledge-poor approach that allows 
human intervention in the conversion process. This is different to existing text-to-graphics research which 
focuses on providing fully automatic knowledge-centric processes. The use of corresponding audio files for 
deriving temporal information for quantifying behaviour is innovative in the domain of text-to-graphics. We 
present the first use of interval-based constraint optimization for determining quantified scene behaviour.   

The methods described in this article contribute to the field of virtual reality by providing a mechanism 
for automatically instantiating and populating virtual environments. Our method creates virtual environments 
without the need for extensive manual effort in 3D modeling, environment design and motion quantification. 
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